We consider the problem of finding an accurate representation of neuron shapes, extracting sub-cellular features, and classifying neurons based on neuron shapes. In neuroscience research, the skeleton representation is often used as a compact and abstract representation of neuron shapes. However, existing methods are limited to getting and analyzing "curve" skeletons which can only be applied for tubular shapes. This paper presents a 3D neuron morphology analysis method for more general and complex neuron shapes. First, we introduce the concept of skeleton mesh to represent general neuron shapes and propose a novel method for computing mesh representations from 3D surface point clouds. A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised learning method is used to embed the skeleton graph for neuron classification. Extensive experiment results are provided and demonstrate the robustness of our method to analyze neuron morphology.
translated by 谷歌翻译
The number of malware is constantly on the rise. Though most new malware are modifications of existing ones, their sheer number is quite overwhelming. In this paper, we present a novel system to visualize and map millions of malware to points in a 2-dimensional (2D) spatial grid. This enables visualizing relationships within large malware datasets that can be used to develop triage solutions to screen different malware rapidly and provide situational awareness. Our approach links two visualizations within an interactive display. Our first view is a spatial point-based visualization of similarity among the samples based on a reduced dimensional projection of binary feature representations of malware. Our second spatial grid-based view provides a better insight into similarities and differences between selected malware samples in terms of the binary-based visual representations they share. We also provide a case study where the effect of packing on the malware data is correlated with the complexity of the packing algorithm.
translated by 谷歌翻译
本文提出了一种延时3D细胞分析的方法。具体而言,我们考虑了准确定位和定量分析亚细胞特征的问题,以及从延时3D共聚焦细胞图像堆栈跟踪单个细胞的问题。细胞的异质性和多维图像的体积提出了对细胞形态发生和发育的完全自动化分析的主要挑战。本文是由路面细胞生长过程和构建定量形态发生模型的动机。我们提出了一种基于深度特征的分割方法,以准确检测和标记每个细胞区域。基于邻接图的方法用于提取分段细胞的亚细胞特征。最后,提出了使用多个单元格特征的基于强大的图形跟踪算法在不同的时间实例中关联单元格。提供了广泛的实验结果,并证明了所提出的方法的鲁棒性。该代码可在GitHub上获得,该方法可通过Bisque Portal作为服务可用。
translated by 谷歌翻译
通过越来越多的恶意软件和网络攻击,需要“正交”网络防御方法,其通过检测不被其他方法预测的唯一恶意软件样本来互补。在本文中,我们提出了一种新颖和正交的恶意软件检测(OMD)方法来使用音频描述符,图像相似性描述符和其他静态/统计特征的组合来识别恶意软件。首先,我们展示当恶意软件二进制文件表示为音频信号时,如何如何在分类恶意软件系列方面有效。然后,我们表明对音频描述符的预测与对图像相似性描述符和其他静态特征的预测正交。此外,我们开发了一个错误分析的框架和度量标准,以量化正交的新功能集(或类型)是关于其他特征集的方式。这允许我们为我们的整体框架添加新功能和检测方法。恶意软件数据集的实验结果表明,我们的方法为正交恶意软件检测提供了一种强大的框架。
translated by 谷歌翻译
恶意PDF文件对需要现代威胁情报平台的各种安全组织提出了严重威胁,以有效分析和表征PDF恶意软件的身份和行为。最先进的方法使用机器学习(ml)来学习特征PDF恶意软件的功能。然而,ML模型通常很容易受到逃避攻击的影响,其中对手会使恶意软件代码禁止以避免被防病毒检测到。在本文中,我们推出了一种简单而有效的整体方法,用于PDF恶意软件检测,利用了恶意软件二进制文件的信号和统计分析。这包括组合来自各种静态和动态恶意软件检测方法的正交特征空间模型,以便在面对代码混淆时启用广泛的鲁棒性。使用包含恶意软件和良性示例的近30,000个PDF文件的数据集,我们表明我们的整体方法维持了高检测率(99.92%)的PDF恶意软件,甚至可以检测通过简单方法创建的新的恶意文件,以删除恶意软件所进行的混淆作者隐藏他们的恶意软件,这些恶意软件被大多数杀毒失真。
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
The study aims the development of a wearable device to combat the onslaught of covid-19. Likewise, to enhance the regular face shield available in the market. Furthermore, to raise awareness of the health and safety protocols initiated by the government and its affiliates in the enforcement of social distancing with the integration of computer vision algorithms. The wearable device was composed of various hardware and software components such as a transparent polycarbonate face shield, microprocessor, sensors, camera, thin-film transistor on-screen display, jumper wires, power bank, and python programming language. The algorithm incorporated in the study was object detection under computer vision machine learning. The front camera with OpenCV technology determines the distance of a person in front of the user. Utilizing TensorFlow, the target object identifies and detects the image or live feed to get its bounding boxes. The focal length lens requires the determination of the distance from the camera to the target object. To get the focal length, multiply the pixel width by the known distance and divide it by the known width (Rosebrock, 2020). The deployment of unit testing ensures that the parameters are valid in terms of design and specifications.
translated by 谷歌翻译
Of late, insurance fraud detection has assumed immense significance owing to the huge financial & reputational losses fraud entails and the phenomenal success of the fraud detection techniques. Insurance is majorly divided into two categories: (i) Life and (ii) Non-life. Non-life insurance in turn includes health insurance and auto insurance among other things. In either of the categories, the fraud detection techniques should be designed in such a way that they capture as many fraudulent transactions as possible. Owing to the rarity of fraudulent transactions, in this paper, we propose a chaotic variational autoencoder (C-VAE to perform one-class classification (OCC) on genuine transactions. Here, we employed the logistic chaotic map to generate random noise in the latent space. The effectiveness of C-VAE is demonstrated on the health insurance fraud and auto insurance datasets. We considered vanilla Variational Auto Encoder (VAE) as the baseline. It is observed that C-VAE outperformed VAE in both datasets. C-VAE achieved a classification rate of 77.9% and 87.25% in health and automobile insurance datasets respectively. Further, the t-test conducted at 1% level of significance and 18 degrees of freedom infers that C-VAE is statistically significant than the VAE.
translated by 谷歌翻译
Some recent pieces of work in the Machine Learning (ML) literature have demonstrated the usefulness of assessing which observations are hardest to have their label predicted accurately. By identifying such instances, one may inspect whether they have any quality issues that should be addressed. Learning strategies based on the difficulty level of the observations can also be devised. This paper presents a set of meta-features that aim at characterizing which instances of a dataset are hardest to have their label predicted accurately and why they are so, aka instance hardness measures. Both classification and regression problems are considered. Synthetic datasets with different levels of complexity are built and analyzed. A Python package containing all implementations is also provided.
translated by 谷歌翻译
In this paper the implementation of piezoelectrics to a state-of-the-art wafer gripper is investigated. The objective is to propose and validate a solution method, which includes a mechanical design and control system, to achieve at least 5% damping for two eigenmodes of a wafer gripper. This objective serves as a 'proof of concept' to show the possibilities of implementing a state-of-the-art damping method to an industrial application, which in turn can be used to dampen different thin structures. The coupling relation between the piezoelectrics and their host structure were used to design the placement of the piezoelectric patches, together with modal analysis data of the a state-of-the-art wafer gripper. This data had been measured through an experimental setup. Active damping has been succesfully implemented onto the wafer gripper where positive position feedback (PPF) is used as a control algorithm to dampen two eigenmodes.
translated by 谷歌翻译